
Physics 566: Quantum Optics I 
Problem Set 5 

Due Thursday, October 23, 2013 
 
 

Problem 1:  Ramsey fringes and the measurement of T2 times (10 Points) 
 
(a) We seek to measure the coherence of between the computational basis states of a 
qubit 0 , 1{ } .  Consider a two-pulse Ramsey sequence: A “hard” π/2 pulse around x-
axis with detuning Δ, free evolution for a time Τ, a second hard π/2 pulse around x-axis at 
the same detuning Δ.  

 
 

During the free evolution, the coherence ρ01  decays exponentially with rate 1/T2 .  Show 
that, given the qubit initially in 1 , the probability to find 0  after the sequence is 
 

P0 =
1
2
1+ cos(ΔT )e−T /T2⎡⎣ ⎤⎦   

 
Explain this using the evolution on the Bloch sphere.  Plot this for Δ /2π = 1 MHz and 
T2=25 µs, for T=0 to 25 µs. 
 
(b) Suppose now that in addition to homogeneous decay, there is inhomogeneous decay 
T2
* .  Suppose that if the pulses are tuned to frequency ω , the probability the detuning 

seen by the qubit is Gaussian distributed, p(Δ) = e
− (Δ−Δ0 )

2

2δ 2 / 2πδ 2  , where Δ0  is the mean 
detuning and δ = 1/T *

2   is the spread in detunings.  Calculate the probability P0  in the 
same two-pulse Ramsey sequence of part (a) for T2

* = 5  µs. Comment on the result. 
 
(c) Now consider a three-pulse Hahn spin-echo Ramsey sequence:  
A “hard” π/2 pulse around x-axis with detuning Δ, free evolution for a time ΤΑ, a “time 
reverse” hard π pulse around x, free evolution for a time ΤΒ, and then a second hard π/2 
pulse around x-axis at the same detuning Δ. 
 

 
Show, P0 =

1
2
1− cos Δ(TA −TB )[ ]e−δ 2 (TA−TB )2 /2e−(TA+TB )/T2( ) , and plot for TA = 10µs , as a 

function of TB=0 to 25 µs. 
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Fig. 7 Ramsey fringes measured at Ng = 0.52, φ = 0 and ∆ν = 41 MHz. The decay time constant of the fringes
is here Tϕ ∼ 30 ns. Lower panels : echo signals obtained with the pulse sequence schematically described on the right
side, for various sequence durations ∆t. A first π/2 pulse brings the spin $s on the −y axis. Follows a free precession by
an angle α = 2π∆ν t1 during a time t1. A subsequent π pulse brings the spin in the symmetric position with respect to
x axis. Follows a second free precession during time t2, which brings the spin at an angle ε = 2π∆ν(t2 − t1) with the
y axis. The last π/2 pulse results in a final z component of the spin equal to cos ε. The average switching probability
p = (1 − 〈cos ε〉)/2, obtained by repeating the sequence, is an oscillating function of t2 − t1. The amplitude of the
oscillations is damped away from t1 = t2 (thick tick in each panel) due to fluctuations of ∆ν.

the echo signal varies as (1−〈cos [2π∆ν(t2 − t1)]〉)/2 and is therefore less sensitive to fluctuations of ∆ν
from sequence to sequence when t1 ∼ t2. In the experiment, we have recorded the switching probability
at fixed values of ∆t, as a function of the delay t1 (left panels of Fig. 7). Up to ∆t % 1 µs, fringes emerge
around t1 = t2 = (∆t − τ)/2 (here, τ ∼ 15 ns), indicating that during pulse sequences of this duration,
coherence was at least partly conserved. As expected, the period of the oscillations is twice as short in the
echo experiment than in the Ramsey experiment. The observation of spin echoes at time scales much larger
than the decay time of the Ramsey fringes indicates that in this situation decoherence was essentially due to
charge fluctuations at frequencies lower than 1/∆t ≈ 1 MHz. No echo was seen in experiments performed
at φ '= 0, suggesting that the relevant phase noise was at higher frequencies.

In all our time domain experiments, the oscillation period of the switching probability closely agrees
with theory, meaning a precise control of the preparation of %s and of its evolution. However, the amplitude
of the oscillations is smaller than expected by a factor of three to four. This loss of contrast is likely to be
due to a relaxation of the level population during the measurement itself. In principle the current pulse,
whose rise time is 50 ns, is sufficiently adiabatic not to induce transitions directly between the two levels.
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is here Tϕ ∼ 30 ns. Lower panels : echo signals obtained with the pulse sequence schematically described on the right
side, for various sequence durations ∆t. A first π/2 pulse brings the spin $s on the −y axis. Follows a free precession by
an angle α = 2π∆ν t1 during a time t1. A subsequent π pulse brings the spin in the symmetric position with respect to
x axis. Follows a second free precession during time t2, which brings the spin at an angle ε = 2π∆ν(t2 − t1) with the
y axis. The last π/2 pulse results in a final z component of the spin equal to cos ε. The average switching probability
p = (1 − 〈cos ε〉)/2, obtained by repeating the sequence, is an oscillating function of t2 − t1. The amplitude of the
oscillations is damped away from t1 = t2 (thick tick in each panel) due to fluctuations of ∆ν.

the echo signal varies as (1−〈cos [2π∆ν(t2 − t1)]〉)/2 and is therefore less sensitive to fluctuations of ∆ν
from sequence to sequence when t1 ∼ t2. In the experiment, we have recorded the switching probability
at fixed values of ∆t, as a function of the delay t1 (left panels of Fig. 7). Up to ∆t % 1 µs, fringes emerge
around t1 = t2 = (∆t − τ)/2 (here, τ ∼ 15 ns), indicating that during pulse sequences of this duration,
coherence was at least partly conserved. As expected, the period of the oscillations is twice as short in the
echo experiment than in the Ramsey experiment. The observation of spin echoes at time scales much larger
than the decay time of the Ramsey fringes indicates that in this situation decoherence was essentially due to
charge fluctuations at frequencies lower than 1/∆t ≈ 1 MHz. No echo was seen in experiments performed
at φ '= 0, suggesting that the relevant phase noise was at higher frequencies.

In all our time domain experiments, the oscillation period of the switching probability closely agrees
with theory, meaning a precise control of the preparation of %s and of its evolution. However, the amplitude
of the oscillations is smaller than expected by a factor of three to four. This loss of contrast is likely to be
due to a relaxation of the level population during the measurement itself. In principle the current pulse,
whose rise time is 50 ns, is sufficiently adiabatic not to induce transitions directly between the two levels.
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Problem 2:  Adiabatic rapid passage (10 Points) 
Suppose we have an inhomogeneously broadened system - e.g. a system of two-level 
oscillators with a distribution of resonance energies such as a thermal gas (Doppler 
broadening) or with a distribution is a solid crystal due to local strain effects.  How can we 
apply a π-pulse to send all of atoms to the excited state with high probability? 
 
(a) Qualitatively suppose we apply a radiation field with a frequency well below 
resonance  (Δ <<Ω) and sweep the field slowly up through resonance, ending well above 
resonance (Δ>> Ω), on a time scale much slower that the Rabi frequency T>>Ω-1, but fast 
compared to spontaneous emission T<<Γ-1.  Use the Bloch-sphere magnetic resonance 
picture to show that population in the ground state will "adiabatically" be transferred to 
the excited state. 
 
(b) Sketch the eigenvalues of the two-level atom in the RWA as a function of the 
frequency of the laser.  Use the adiabatic theorem of quantum mechanics to explain the 
transfer of population from the ground to excited state, and the constraints on the time 
scales.  What is the condition that we can invert the entire inhomogeneously broadened 
sample. 
 
 
Problem 2:  Light forces on atoms (10 Points) 
   Electromagnetic fields can exert forces on atoms.  This is force can be dissipative (the 
basis of laser cooling) or conservative (the basis for optical trapping, such as optical 
lattices).  Suppose we are given a monochromatic, uniformly polarized laser field of the 
form   E(x, t) =

 
ε LE0 (x)cos(ωL t + φ(x)).  The interaction of this field with a two-level atom 

is described by the Hamiltonian in the rotating frame, 
 

 
ĤAL (R) =

Ω(R)
2

e− iφ (R ) e g + eiφ (R ) g e( ) , 

 
where R is the center of mass position of the atom, and   Ω(R) = e ˆ d ⋅

 
ε L g E0 (R) .  

Assuming the internal state of the atom relaxes to its steady state much faster than the 
atom moves, we can neglect the quantum mechanics of the atom's center of mass, and 
treat its motion  as a classical point particle (this is know as the "semiclassical model"). 
The force operator on the atom is then F = − ∇ĤAL (R) . 

 



(a) Under these condition show that the mean force on the atom is, F = Fdiss + Freact , where 

 
 
Fdiss = − 1

2
v(t) Ω(R)∇φ(R) is the "dissipative force" and  

 
Freact = − 1

2
u(t)∇Ω(R)  is the "reactive force", 

 
with u and v the components of the Bloch vector in the rotating frame. 
 
(b) Show that in steady state, the rate at which that laser does work on the atom, averaged 
over an optical period is:  
 

 

dW
dt s.s

= Ω0ω L

2
vs.s = γ sω L , where γ s = Γρee

s.s.  is the photon scattering rate.  

Interpret this result. 
 
(c) For the case of a plane wave    E(R,t) =

 
ε LE0 cos(ω Lt − k ⋅R) , show that in steady-state: 

 

 Fdiss = γ skL .  This is known as "radiation pressure" or the “scattering force” - interpret. 

 
(d) For the "reactive force" consider the case of weak saturation, s<<1. Show that  
 

Freact = −∇U (R) ,  
 

where the optical “dipole force” is  
 
U(R) = Δ(R) s

2
= − 1

4
Re( α ) E0 (R)

2   -- interpreted 

the physical meaning of U(R) .  
 
 
 


